
Wearther : Weather-based Outfit Suggestion

Jiahong Li
Department of Computer Science and Engineering

Santa Clara University
Santa Clara, United States

jli11@scu.edu

Piyush Kulkarni
Department of Computer Science and Engineering

Santa Clara University
Santa Clara, United States

pkulkarni@scu.edu

Yuehan Cui
Department of Computer Science and Engineering

Santa Clara University
Santa Clara, United States

ycui2@scu.edu

Almas Khan
Department of Computer Science and Engineering

Santa Clara University
Santa Clara, United States

akhan3@scu.edu

Abstract—With the development of web technology
and increased accuracy of meteorology, more and more
weather forecasting apps have emerged in the market. As
many of them have potent functionalities such as minute-
level precipitation forecasts, and air quality indications,
they seldom give accurate and detailed suggestions on what
to wear and how much to wear based on the weather. We
believe this functionality can significantly ease our lives
by saving time in checking the weather and considering
what to wear before leaving home every day. Therefore,
we introduce a Wearther, a cloud-hosted web application
with a modern UI design and powerful backend logic. It
allows users to check real-time weather conditions, review
weather-based clothing suggestions, and roll back account-
based history data.

Index Terms—weather, forecast, clothing, suggestion

I. INTRODUCTION

A. The Outfit Suggestion System

In this project, we implemented an outfit sugges-
tion system. It gives users suggestions on what to
wear for a given day. Finding what to wear seems
to be trivial, but it is actually not. It depends on lots
of factors such as where you go, what the season
outside is if you need to walk/bike a lot outside, if
you are going to do sports, and most importantly,
the weather. The temperature, wind, rain, UV index,
and humidity are all important factors that need
to be considered before deciding what you wear.
It is a complex job for people and we need to
do it everyday. So, in this project, we simplified

this process. We implemented a suggestion scheme
called the 26-degree outfit rule to help the user
choose what to wear wisely. The system is also
accessible, all user need is to register for an account
and log in to the system. The system acquires the
user’s location from the device and retrieves weather
from weather service, and suggestions are presented
to the user. The user can then find a few groups
of suggestions on what to wear and then they can
decide themselves.

B. The Technical Challenges

We are implementing a full-stack website ser-
vice in this project. It is a very involved project.
From the user’s perspective, it has a frontend UI
design component, a frontend interaction compo-
nent, a backend component, and an object storage
component. But it is actually more than that. To
support the website, there is a database compo-
nent, a container image registry component, and an
entire suite of cloud infrastructures as well. The
interaction between components needs collaboration
and testing. The difference in architecture on the
local development machine and on a cloud server
is bringing challenges to this project as well. The
choice of deployment server and the deployment
server orchestration needs testing to find the best
performance-to-cost option.

1



II. BACKGROUND AND RELATED WORK

Humans have developed weather forecasting for
thousands of years. It’s been the most crucial pre-
requisite knowledge for agriculture and thus one
of the most fundamental technologies that build up
human civilization. Thus, to utilize technology with
such importance, there have been numerous weather
forecasting applications and tools in the market.
Nevertheless, only a tiny portion of them offer users
suggestions on their clothing based on the weather
conditions. And some of the most representative
ones will be introduced below.

A. Mobile Applications
If one searches for ”weather forecast applications

with clothing suggestion”, Weather Fit [4] may
probably be one of the top results. Being one
of the best products in this field with a 4.6 out
of 5 review score, Weather Fit has a modern UI
design and informative features that are elegant and
ease-to-use for smartphone users. Unfortunately, it
only supports iOS devices and requires a monthly
subscription fee, making it an exclusive and expen-
sive utility tool for iPhone and iPad users. On the
Android side, Weatherproof [6] has been one of the
most popular choices on the google app store. It has
a decent review score of 4.4 out of 5 and score-
matching powerful features on weather forecasts
and clothing suggestions. However, Weatherproof’s
UI design is not appealing at all. With a design
style like the earliest mobile apps when iPhone
was born, younger generations will find it hard to
navigate and use. In addition, it’s an application that
is based solely on Android OS. Another application
called Snafu [5] may provide better accessibility
since it supports both iOS and Android. On the
other hand, with a 2.8 out of 5 on the google app
store, Snafu’s core functions, weather forecast and
clothing suggestions, often stop working or give
totally incorrect dressing advice.

B. Web Applications
Regarding accessibility, web applications are of-

ten the most inclusive ones since all devices with
internet connections and graphic browsers can visit
them with ease. Furthermore, since the applications
we discussed here only seek to provide weather and
dressing information in a concise and informative

manner, web applications are sufficient to provide
interaction space and responses on small devices
like smartphones. Developed in 2013, being one of
the oldest websites that provides clothing suggestion
features based on weather forecasts, Clothesfore-
cast.com [1] fails to offer a clear and intuitive UI
to show its dressing suggestions. In addition, it also
placed many advertisements around the main panels,
making the UI even harder to navigate. Moreover,
Dailydressme.com [2] provides a more beautiful
and concise UI that lists clothing suggestions and
weather forecasts in one tall container. However,
rather than giving inclusive and generalized sugges-
tions, it provides users with outfit combos from an
online store called Revolve, which only sells female
clothing.

C. Insights
Based review of the above mobile and web appli-

cations’ advantages and drawbacks, we come to a
baseline to create an accessible web application that
provides sufficient weather info as well as inclusive
and diverse clothing suggestions. Furthermore, this
application needs to have a modern UI design that
is not only concise and easy to navigate but also
appealing to use.

III. APPROACH

A. Frontend
The front-end of Wearther is built based on React

framework. React is a framework developed by
Facebook to modulize the front-end development
logic using a new syntax called JSX. It empowers
the front end to render only necessary parts -
components that are actually changing and thus lead
to a much higher performance and better efficiency.
Together with React, a template called Material
Dashboard 2 React [3] and various libraries are
used. Some of the most significant libraries used
in the front end are React Context, Material UI
(MUI), and fullcalendar. In particular, React Context
enables the front-end to store and get state dynami-
cally and is mostly used for storage of login tokens,
location info, and weather conditions fetched from
the backend. MUI is used for better and smoother
component designs since Google provides many
performing and concise animations in it. In addition,
fullcalendar offers the interactive calendar feature

2



Fig. 1. Frontend Architecture

which can generate interactions such as date selec-
tions or month switching with ease.

As Figure 1 indicates, the front-end structure can
be divided into two main components, the Authen-
tication componens and the Dashboard component
which are coordinated by App.js. Authentication
component is the default page users navigated to
without logging in. It includes two sub-components,
login and signup, which provides UI elements for
account login and register. Once users log in, a token

will be validated from the backend and stored inside
the React Context manager, and the Dashboard com-
ponent will show up. A date data of today’s date and
a location data consist of latitude and longitude will
be fetched from the user device after the Dashboard
component is loaded. These two pieces of data will
also be stored inside React Context manager with
the token. Inside the Dashboard component, there
are three sub-components, Weather, Recommenda-
tion, and History, each charges for a critical section

3



in the main page of Wearther. These three sub-
components are dependent on the location, date, and
token information from the React Context manager
to be properly functional. Thus, there is a load-
ing animation in Dashboard to prevent unnecessary
loading before these three pieces of data are ready.
To be more specific, Weather component provides
users with detailed weather conditions and meta-
data. In the WeatherCard, today’s weather, temper-
ature, rain condition will be presented. And in the
MetadataCard, the humidity, precipitation probabil-
ity, and wind speed will be presented. Furthermore,
the Recommendation component will show users
the dressing suggestions generated from the backend
logic. It includes a module called ClothCard, which
shows all the recommended combinations based on
today’s weather. The final section of the Dashboard
component is the History sub-component, which
enables users to select previous visited date and
check its weather condition with clothing recom-
mendations. In specific, there are two modules in
the History sub-component. The Calendar module
is implemented using the fullcalendar library and
provides users with a interactive calendar where
they can switch through months and years, select
dates, and re-locate to today. Another module is the
DateWeatherCard. Placing below the Calendar mod-
ule, it offers detailed review of the selected date’s
weather condition and clothing recommendations so
that users can roll back and refer to their previous
selections based on weather. From the figure, you
may also notice the api calls, which are directed to
an organzied folder that contains all the apis into
isolated components to maintain a clean and secure
coding manner.

B. Backend

The application’s backend module – Birdy, was
developed using Django, which is a Python-based
web framework. Its rapid development, high scal-
ability and enhanced security features made it the
most suitable tool for building the backend service
for our application. Django provides a facility to
create multiple Django ‘apps’ within the project,
each representing a discrete part of it. We utilized
this feature to classify our backend services within
multiple apps, resulting in a cleaner, highly scalable

and reliable code. Figure 2 shows the architecture
of Birdy.

An incoming HTTP request is directed to the
desired service via the paths specified in urls.py.
Upon arrival at the desired service, the request is
then checked against the different endpoints within
the Django app’s urls.py file, and forwarded to the
API Methods residing in the app’s views.py file.
A Django model defines the structure of stored
data in the database, including the field types, their
maximum size, default values, selection list options,
etc.
ORM (Object Relational Mapper) helps us to
make queries to the database, by translating the
Python query into SQL. These queries are stored in
queries.py, while the models are stored in models.py
files.
Serializers help us validate the fields within the
incoming and outgoing data, and translate the re-
sponse object into JSON format.
Below is a description of various services within the
backend module:

1) Authentication: Django provides a built-in,
ready-to-use session-based authentication system.
However, it works only with the traditional HTML
request-response cycle, making it unfavorable for
our application. To comply with the application’s
API requirements, a JWT token-based authentica-
tion system was created. The newly created JWT
service offers a more secure and faster authorization
to users.This helped us offer services within the
website based upon user’s authorization class -
registered user or admin.

2) Outfit Master: This is the core service of
the application. Provided a temperature value, this
service performs computations and outputs outfit
suggestions in the response. Suggestion Algorithm
An algorithm was designed to compute suggestions
based upon the available pool of products in the
database. Each product is associated with a certain
weather value. These products were fetched based
upon their individual weather value, to add up to
the difference between the ideal temperature and
supplied temperature. Results were further classified
into four categories :

1) Bottom
2) Top must
3) Top optional 1 and 2

4



Fig. 2. Backend Service Architecture

Apart from the above mentioned core services,
mentioned below are the utilities that serve as helper
functions throughout the service, and also wrap
third-party services.

3) Weather Utility: To fetch real-time weather
data for a given location, we made use of Open-
Weather, which provides an API to fetch data with
very low latency. This API takes input as the user’s
location coordinates - latitude and longitude and
sends the current weather as a JSON response. A

helper function was developed to filter the weather
data, as per front-end’s requirements, and later as-
sociated with a separate custom endpoint.

4) Timezone Utility: This translates UTC times-
tamp received from the OpenWeather API response,
to the user’s local time zone in HH::MM:SS format.

5) Session Utility: This provides endpoints to
store and fetch variables from the current user’s
browser session. This helps in passing data as
variables, through different services within different

5



pages.
6) Testing and Code Security: The API end-

points were tested using Postman. To ensure desired
output of individual helper functions and services,
unit tests were written. Black and flake8 were used
as pre-commit linting tools.

IV. OUTCOME

A. Cloud Architecture

The cloud architecture of our system is shown
in figure 3. We are using OCI as our main cloud
service provider because they offer the most free
resources. We provisioned a VM, an Object Storage,
and a Container Registry from the cloud provider. In

Fig. 3. Cloud Architecture

our virtual machine, we are running a Docker host
that runs our containerized applications. In total we
are using three containers. One for front-end, one
for backend, and one for the database. The frontend
container is running the react application that ren-
ders the website and handles user interaction. The

backend container is running the Django application
that provides user authentication, and data access
operations. The database container is used by the
backend service to store data.

The object storage bucket is used to host static
image files to the user.

The container registry is used to store container
image to be deployed to the docker host.

B. Deployment Method

We decided to containerize all of our services
because that is the best way to provide environment
idempotent deploy packages. A separate Dockerfile
for the backend and the front-end is used to build the
image separately. In our workflow, we develop our
service in personal computers. When the codebase is
ready for deployment, we build the container image
on the personal computer and push them to the
container registry, then from the virtual machine,
we pull the image from the container registry and
deploy it to the docker host. A challenge we en-
countered here is that the docker host is an ARM
architecture machine which is different from what
people have(x86). So building multi-arch images lo-
cally is a time-consuming process because software
emulate is needed to build ARM images.

C. Runtime

1) Frontend Runtime: The front-end is imple-
mented in the react framework and the project build
to static files. Any service that can host can be used
as the production server. In our project, we choose
to use Nginx to serve the static files because it is
the most widely used open source web server in the
world.

2) Backend Runtime: The backend is imple-
mented in Django with Python. It is not compiled
but directly executed so the choice of a production
server is more limited. After doing research, we
choose gunicorn as the production server as that
works seamlessly with the Django framework.

3) Database Runtime: We chose postgresql as
our database service and we ran one instance of
it directly using the image from Docker Hub. It is
an open-source database that is widely used by the
industry.

6



Fig. 4. Outcome website

D. Performance
1) Image size: The container image size is shown

below
• Frontend: 33.8 MB. The frontend container

image is very small because it only contains
a few compiled static file and a nginx server.

• Backend: 1.01 GB. The backend container im-
age is very large compared to the frontend
image because it contains a full python run-
time with lots of python packages and system
packages installed.

• Database: 359 MB. The database image is an
optimized image from the postgresql team.

2) Memory Consumption:
• Frontend: 3.96 MB. The frontend is only serv-

ing static files so it is using a small amount of
memory.

• Backend: 55.57 MB. The backend service is
more complex so it is using more memory.

• Database: 22.27 MB. The database service is
complex in nature so it is using more memory.

V. ANALYSIS AND FUTURE WORK

A. Shortcomings
• The application does not provide a facility to

switch between Fahrenheit/Celsius temperature
options.

• The application currently does not consider
users’ suggestion history to predict future sug-
gestions.

B. Improvement in the future
• Need to design a front-end module that would

convert the existing Celsius temperature to
Fahrenheit

• Need to implement a machine learning module
that would learn and train its model from
the past user choices and make suggestions
accordingly.

• The application can incorporate a marketplace
where the user may have an option to buy prod-
ucts right from suggestions list, via redirection
to vendor’s website.

7



VI. CONCLUSION

We successfully implemented all of the de-
signed features and architecture as described in
the proposal, with minimal modifications. These
features are real-time weather checking, weather-
based clothing recommendations, and account-based
history reviewing. Furthermore, we achieved our
baseline to create a modern-looking, scalable, and
reliable web application that provides users with
inclusive and adaptable outfit options based on
informative real-time weather conditions. The code-
base follows OOPS paradigm, making it easier
to incorporate additional new features within the
application.

VII. GITHUB LINKS

A. Frontend
https://github.com/HarveyLijh/wearther-frontend

B. Backend
https://github.com/pikulkarni7/Wearther-Birdy

C. Cloud
https://github.com/Yuehanc/COEN241-Infra

REFERENCES

[1] “Clothes forecast,” Clothes Forecast - Provides
information on appropriate clothes. [Online]. Available:
https://clothesforecast.com/. [Accessed: 06-Dec-2022].

[2] “Daily dress me,” Daily Dress Me. [Online]. Available:
https://dailydressme.com/. [Accessed: 06-Dec-2022].

[3] “Overview: Material dashboard react @ creative tim,”
Creative Tim. [Online]. Available: https://www.creative-
tim.com/learning-lab/react/overview/material-dashboard/.
[Accessed: 07-Dec-2022].

[4] “Weather fit: IOS app that tells you what to wear,” Weather Fit:
iOS App That Tells You What to Wear. [Online]. Available:
https://weatherfit.com/. [Accessed: 06-Dec-2022].

[5] “The weather wardrobe,” Snafu, 21-Jun-2020. [Online]. Avail-
able: http://snafuapp.com/. [Accessed: 06-Dec-2022].

[6] “Weatherproof - what to wear? - apps on
Google Play,” Google. [Online]. Available:
https://play.google.com/store/apps/details?id=com.changemystyle.weatherproof
[Accessed: 06-Dec-2022].

8


